找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

X86汇编教程1

[复制链接]
admin 发表于 2012-9-3 00:43:16 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
第一章 认识处理器

中央处理器(CPU)在微机系统处于“领导核心”的地位。汇编语言被编译成机器语言之后,将由处理器来执

行。那么,首先让我们来了解一下处理器的主要作用,这将帮助你更好地驾驭它。

典型的处理器的主要任务包括
从内存中获取机器语言指令,译码,执行
根据指令代码管理它自己的寄存器
根据指令或自己的的需要修改内存的内容
响应其他硬件的中断请求


一般说来,处理器拥有对整个系统的所有总线的控制权。对于Intel平台而言,处理器拥有对数据、内存和

控制总线的控制权,根据指令控制整个计算机的运行。在以后的章节中,我们还将讨论系统中同时存在多

个处理器的情况。

处理器中有一些寄存器,这些寄存器可以保存特定长度的数据。某些寄存器中保存的数据对于系统的运行

有特殊的意义。

新的处理器往往拥有更多、具有更大字长的寄存器,提供更灵活的取指、寻址方式。

寄存器

如前所述,处理器中有一些可以保存数据的地方被称作寄存器。

寄存器可以被装入数据,你也可以在不同的寄存器之间移动这些数据,或者做类似的事情。基本上,像四

则运算、位运算等这些计算操作,都主要是针对寄存器进行的。

首先让我来介绍一下80386上最常用的4个通用寄存器。先瞧瞧下面的图形,试着理解一下:

31 15 0
|------------eax-------------|
|--ah---|---al--|
|------------|-------|-------|
| | ax |
| | | |
|------------|-------|-------|
上图中,数字表示的是位。我们可以看出,EAX是一个32-bit寄存器。同时,它的低16-bit又可以通过AX这

个名字来访问;AX又被分为高、低8bit两部分,分别由AH和AL来表示。

对于EAX、AX、AH、AL的改变同时也会影响与被修改的那些寄存器的值。从而事实上只存在一个32-bit的寄

存器EAX,而它可以通过4种不同的途径访问。

也许通过名字能够更容易地理解这些寄存器之间的关系。EAX中的E的意思是“扩展的”,整个EAX的意思是

扩展的AX。X的意思Intel没有明示,我个人认为表示它是一个可变的量 。而AH、AL中的H和L分别代表高和

低 。

为什么要这么做呢?主要由于历史原因。早期的计算机是8位的,8086是第一个16位处理器,其通用寄存器

的名字是AX,BX等等;80386是Intel推出的第一款IA-32系列处理器,所有的寄存器都被扩充为32位。为了

能够兼容以前的16位应用程序,80386不能将这些寄存器依旧命名为AX、BX,并且简单地将他们扩充为32位

——这将增加处理器在处理指令方面的成本。

Intel微处理器的寄存器列表(在本章先只介绍80386的寄存器,MMX寄存器以及其他新一代处理器的新寄存

器将在以后的章节介绍)

通用寄存器
下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,

修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。

EAX
32-bit宽
通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此

时,DS作为段 寄存器或选择器)
EBX
32-bit宽
通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在

保护模式中,同样可以起这个作用。
ECX
32-bit宽
通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为 寄存

器或段选择器)。
EDX
32-bit宽
通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移

指针(此时,DS作为段 寄存器或选择器)。

上述寄存器同EAX一样包括对应的16-bit和8-bit分组。

用作内存指针的特殊寄存器

ESI
32-bit宽
通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它

当作通用寄存器来用。DS是默认段寄存器或选择器。
EDI
32-bit宽
通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人

把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EBP
32-bit宽
这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部

变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。

注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,

却没有办法直接访问他们的低8位。

段寄存器和选择器

实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit

的,而保护模式下的选择器是32-bit的。

CS 代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这

个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修

改这个寄存器的内容。

DS 数据段,或数据选择器。这个寄存器的低16 bit连同ESI一同指向的指令将要处理的内存。同时,所有

的内存操作指令 默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可

以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传

送给DS(当然,也可以通过堆栈来做).

ES 附加段,或附加选择器。这个寄存器的低16 bit连同EDI一同指向的指令将要处理的内存。同样的,这

个寄存器可以被装入任意数值,方法和DS类似。

FS F段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可

以被装入任何数值,方法和DS类似。

GS G段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。
SS 堆栈段或堆栈选择器。这个寄存器的低16 bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的

堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对

于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。

* 注意 一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对

他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看

来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。

特殊寄存器(指向到特定段或内存的偏移量):

EIP 这个寄存器非常的重要。这是一个32位宽的寄存器 ,同CS一同指向即将执行的那条指令的地址。不能

够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)

ESP 这个32位寄存器指向堆栈中即将被操作的那个地址。尽管可以修改它的值,然而并不提倡这样做,因

为如果你不是非常明白自己在做什么,那么你可能造成堆栈的破坏。对于绝大多数情况而言,这对程序是

致命的。(SS是默认的段或选择器)

IP: Instruction Pointer, 指令指针
SP: Stack Pointer, 堆栈指针

好了,上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):

CR0, CR2, CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。

还有其他一些寄存器,D0, D1, D2, D3, D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条

件断点。

TR3, TR4, TR5, TR6 和 TR? 寄存器(测试寄存器)用于某些条件测试。

最后我们要说的是一个在程序设计中起着非常关键的作用的寄存器:标志寄存器。
一、运算结果标志位
1、进位标志CF(Carry Flag)
进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。

使用该标志位的情况有:多字(字节)数的加减运算,无符号数的大小比较运算,移位操作,字(字节)之间移位,专门改变CF值的指令等。

2、奇偶标志PF(Parity Flag)
奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。

利用PF可进行奇偶校验检查,或产生奇偶校验位。在数据传送过程中,为了提供传送的可靠性,如果采用奇偶校验的方法,就可使用该标志位。

3、辅助进位标志AF(Auxiliary Carry Flag)
在发生下列情况时,辅助进位标志AF的值被置为1,否则其值为0:

(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。

对以上6个运算结果标志位,在一般编程情况下,标志位CF、ZF、SF和OF的使用频率较高,而标志位PF和AF的使用频率较低。

4、零标志ZF(Zero Flag)
零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

5、符号标志SF(Sign Flag)
符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。

6、溢出标志OF(Overflow Flag)
溢出标志OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。

“溢出”和“进位”是两个不同含义的概念,不要混淆。如果不太清楚的话,请查阅《计算机组成原理》课程中的有关章节。

二、状态控制标志位
状态控制标志位是用来控制CPU操作的,它们要通过专门的指令才能使之发生改变。

1、追踪标志TF(Trap Flag)
当追踪标志TF被置为1时,CPU进入单步执行方式,即每执行一条指令,产生一个单步中断请求。这种方式主要用于程序的调试。

指令系统中没有专门的指令来改变标志位TF的值,但程序员可用其它办法来改变其值。

2、中断允许标志IF(Interrupt-enable Flag)
 楼主| admin 发表于 2012-9-3 00:43:21 | 显示全部楼层
中断允许标志IF是用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:

(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;

(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。

CPU的指令系统中也有专门的指令来改变标志位IF的值。

3、方向标志DF(Direction Flag)
方向标志DF用来决定在串操作指令执行时有关指针寄存器发生调整的方向。具体规定在第5.2.11节——字符串操作指令——中给出。在微机的指令系统中,还提供了专门的指令来改变标志位DF的值。

三、32位标志寄存器增加的标志位
1、I/O特权标志IOPL(I/O Privilege Level)
I/O特权标志用两位二进制位来表示,也称为I/O特权级字段。该字段指定了要求执行I/O指令的特权级。如果当前的特权级别在数值上小于等于IOPL的值,那么,该I/O指令可执行,否则将发生一个保护异常。

2、嵌套任务标志NT(Nested Task)
嵌套任务标志NT用来控制中断返回指令IRET的执行。具体规定如下:

(1)、当NT=0,用堆栈中保存的值恢复EFLAGS、CS和EIP,执行常规的中断返回操作;

(2)、当NT=1,通过任务转换实现中断返回。

3、重启动标志RF(Restart Flag)
重启动标志RF用来控制是否接受调试故障。规定:RF=0时,表示“接受”调试故障,否则拒绝之。在成功执行完一条指令后,处理机把RF置为0,当接受到一个非调试故障时,处理机就把它置为1。

4、虚拟8086方式标志VM(Virtual 8086 Mode)
如果该标志的值为1,则表示处理机处于虚拟的8086方式下的工作状态,否则,处理机处于一般保护方式下的工作状态。
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2024-11-29 17:25 , Processed in 0.054269 second(s), 10 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表