找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

[嵌入式/ARM] 应用于数字图像识别的Hu矩缩放不变性分析

[复制链接]
admin 发表于 2013-3-30 02:40:34 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
摘  要: 关键词: Hu矩;数字图像;缩放不变性;分辨率
       基于Hu矩在模拟图像中具有图像平移、旋转、缩放不变性的特点[1],其作为识别的特征量已广泛应用于模式识别以及跟踪等许多模拟图像分析领域[2]。但Hu矩在数字图像中并不具有缩放不变性,不适合应用于数字图像分析[3], 因此,通过改造Hu矩使其能同时应用于数/模图像领域的分析,成为许多研究人员的共同目标[3-6]。
目前,大部分对Hu矩的改造主要集中在组合矩方面[3-6],但实际上组合矩的数学理论基础存在一定的问题,因为其所使用的x′=kx和y′=ky两个公式在数字图像缩放时并不成立,因此,使用这两个公式推导出的组合矩并不能有效地改善数字图像中Hu矩的缩放不变性。从数学角度推导出Hu矩在数字图像缩放时的变化规律是找到改善其缩放不变性的基础,这也是本文研究的重点。通过对其变化规律的研究,本文得出了两种改善其缩放不变性的方法。实验证实了这两种方法的可行性,同时显示了Hu矩在识别系统中的应用效果优于Zemike[7]和krawtchouk[8]矩。
1 Hu矩简介
     设连续情况下二维图像函数为f(x,y),则它的p+q阶几何矩和中心矩分别定义为:
20121107043725362612126.gif
20121107043725409492127.gif
    20121107043725456362128.gif
     假设a=1,由图1(a)、(c)可以看出,在n/k为整数、m=0或m/k为整数时,ε的值随着n、m的增加而减少。由图1(a)、(b)、(d)可知,若n/k、m/k为非整数,则ε变化比较不规律,ε值取决于n/k、m/k的取整策略以及n、m、k的大小,同时由图1(b)、(d)可知,如果同时按比例增大m、n值,可减少ε值。因为正常情况下,m、n、k为任意取值,ε的变化很难找到规律。因此,在不增大n的前提下,通过矩不变量的组合(组合矩)来减少ε值的方式不具可行性。因为组合矩只是通过Hu矩的组合来构造新的不变量,而Hu矩在数字图像缩放时的变化规律不一致。因此减少ε值的方法只有两种:一是在满足一定分辨率的前提下使图像缩放时图像边缘像素点的坐标值与缩放系数的乘积为整数;二是使图像的分辨率足够高。
3 仿真分析
     对Hu矩在数字图像缩放时的变化规律进行分析,在提出了使Hu矩对数字图像缩放具有不变性的相关方法后,利用Matlab软件对本文方法的可行性进行了仿真验证。图2为用于Hu矩缩放不变性特性分析的四幅图像。图3的曲线反映了图2(a)、(b)、(c)、(d)四幅图像在不同缩放系数下,Hn(k)值的变化规律:钻石实线反映了在条件1(较低像素下,但n/k、m/k为整数)时Hn(k)的值变化规律,图像原始分辨率为400×400,圆虚线反映了在条件2(n/k为非整数时,图像分辨率较低)时Hn(k)值的变化规律,图像原始分辨率为400×400,方块点虚线反映了在条件3(n/k为非整数但图像具有较高的分辨率)时Hn(k)值的变化规律,图像原始分辨率为1 200×1 200。Hn(k)=0.4n+(Mn(k)-Mn(k=1))/Mn(k=1),其中,k是缩放系数,Mn是Hu矩不变量。仿真结果显示,钻石实线的波动最小,因此条件1下Hu矩具有最好的不变性。但是现实的缩放很难达到条件1的要求,方块虚线显示提高分辨率可以很好地改善Hu矩的缩放不变性。同时本文也具体对图像的分辨率与识别率的关系进行了分析,图4显示了字母G的识别率与分辨率的关系,识别分别基于Hu矩、Z矩、K矩不变量,不变量之间的欧氏距离作为识别时的分类依据[9]。图4显示分辨率越高,识别率越高,而且Hu矩具有最好的识别效果。
    20121107043725471992129.gif
    20121107043725565732130.gif
       本文提出了两种使Hu矩在数字图像缩放时具有不变性的方法,仿真结果证明了本方法的可行性。同时仿真也显示在较高像素条件下,Hu矩具有比Z、K矩更优的应用效果,因此,Hu矩非常适合应用于具有高图像分辨率的数字图像识别系统。
参考文献
[1] HU M K. Visual pattern recognition by moment invariants[J].IRE Transactions on Information Theory, 1962, 8(2): 179-187.
[2] MERCIMEK M, GULEZ K, MUMCU T V. Real object recognition using moment invariants[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2005, 30(6): 765-775.
[3] LIU J, LIU Y C, YAN C X. Feature extraction technique based on the perceptive invariability[C]. Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008: 551-554.
[4] 徐学强,汪渤,贺鹏.统一Hu矩及在电视图像目标识别中的应用[J].计算机工程与应用,2006,42(29):213-215.
[5] 杜亚娟,潘泉,张洪才.一种新的不变矩特征在图像识别中的应用[J].系统工程与电子技术,1999,21(10):71-74.
[6] 邵泽明,朱剑英.RSTC不变矩图像特征点匹配新方法[J].华南理工大学学报(自然科学版),2008,36(8):37-40.
[7] SHUTLER J D, NIXON M S. Zernike velocity moments for description and recognition of moving shapes[J]. Image and Vision Computer, 2001, 24(4): 343-356.
[8] ZHANG L, XIAO W W, JI Z. Local affine transform invariant image watermarking by Krawtchouk moment invariants[J]. IET Information Security, 2007, 1(3): 95-107.
[9] POTOCNIK B. Assessment of region-based noment invariants for object recognition[C]. 48th International Symposium ELMAR-2006 on Multimedia Signal Processing and Communications, 2006: 27-32.
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2025-1-8 12:41 , Processed in 0.064147 second(s), 10 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表