本文包含原理图、PCB、源代码、封装库、中英文PDF等资源
您需要 登录 才可以下载或查看,没有账号?注册会员
×
摘 要: 基于16 bit高精度D/A转换器AD5422和高精度放大器LM2902设计了以AT89S51单片机为主控芯片的0~100 mV精密电压源。输出电压的反馈控制采用16 bit A/D转换器LTC1865,显示器为1602LCD;系统的控制软件采用C语言设计。结果表明,系统的输出信号偏移量ΔUomax≤0.02 mV,最大输出驱动电流可达20 mA,设计成本和体积相比传统设计显着降低,可很好地满足使用要求。
关键词: 精密电压源; AD5422; LTC1865; Proteus仿真
0~100 mV精密电压源是航空发动机温度控制盒等重要控制系统定检时必不可少的激励信号源,设计时要求该精密信号源的输出信号偏移量ΔUomax≤0.02 mV,最大输出驱动电流Iomax=20mA,输出范围:0≤Uo≤100 mV,对系统的稳定性要求非常高。对此要求,传统的精密电压源一般采用模拟电路,由精密电位器调节生成,需要很高的D/A分辨率和抗干扰能力[1]。这种电压源不但操作不方便,而且随温度等外界条件影响较大,因而还要加上恒温箱和冷却风扇等辅助措施,大大增加了定检设备的体积和成本,而且输出精度和驱动能力也难以满足要求。
针对上述问题,本文提出了一种新的设计方案。为确保系统软硬件设计的正确性和缩短开发周期,本文基于Proteus平台对系统的软硬件设计进行了仿真。Protues具有强大的电路仿真功能,独一无二地支持外围数电/模电与处理器的协同仿真[2],真正实现了虚拟物理原型功能,在目标板还没有制作前,就可以对软硬件系统的功能和性能指标进行充分调整,极大地增加了设计的准确性,并显着缩短了开发时间。
1 系统的工作原理
该系统的组成框图如图1所示。系统的工作原理是:上位机将需要输出的精密电压对应的控制码通过RS232串口发送给单片机,单片机再控制D/A转换芯片将数字信号转换为模拟电压信号;为减小系统控制误差以及温度、电源电压波动等因素对输出电压的干扰,还需对D/A转换后的模拟电压进行衰减,其衰减倍数由以下分析确定。
电压再衰减100倍。考虑到环境温度的变化和元器件自身的温度漂移特性,系统增设了A/D转换模块和微型液晶显示模块用以输出监控。
2 系统硬件选择与仿真设计
2.1 硬件选择
系统主控单片机选用Atmel公司的AT89S51单片机;D/A芯片选用ADI公司的高精度、完全集成的低成本16 bit D/A转换器AD5422,其输出量程设置为0~10 V;A/D芯片选择Linear公司推出的16 bit逐次逼近型A/D转换器LTC1865,若将LTC1865的参考电压设定为1 V,则该芯片的分辨率为1 000 mV/216=0.015 mV,可以满足系统输出信号偏移量ΔUomax≤0.02 mV的要求;显示器件采用1602LCD微型液晶显示器。
2.2 系统仿真设计
系统的仿真原理图可分为图2(a)所示的D/A转换电路和图2(b)所示的A/D采集与显示电路两部分。
D/A转换电路的工作原理是:AD5422在单片机的3个I/O口(P1.0、P1.1、P1.2)的控制下,将转换后的模拟电压由Vout引脚输出。为确保输出电压稳定,在Vout引脚和+Vsense引脚之间通过电阻R1引入负反馈。输出电压经电阻R3、R4串联分压(衰减)后,再送入高精密放大器LM2902进行放大,可得精密电压输出信号Vout。
|