本文包含原理图、PCB、源代码、封装库、中英文PDF等资源
您需要 登录 才可以下载或查看,没有账号?注册会员
×
摘 要: 为了提高车道线检测的准确性和实时性,提出了一种快速准确的车道线检测方法。首先根据道路的纹理特征求出道路的消失点,再采用改进的Hough变换检测出车道线,结合车道线的一些特征以及摄像头的参数,在不影响测量结果的情况下缩小检测空间,快速准确地检测道路的车道线,并结合BRT车道(快速公交车道)的一些特征识别车辆所在车道是否为BRT车道,从而实现对BRT车道内前方车辆的监督。将代码移植到DM6437开发平台
关键词: 车道线;消失点;BRT车道;Hough变换;Gabor变换;DM6437
随着经济以及道路的发展,我国的汽车保有量迅速上升,交通事故也成为人们普遍关注的焦点。为了提高驾驶的安全性以及操作的简单性,车辆安全辅助驾驶系统成为当今国际智能交通系统研究的重要内容。车道线检测作为车辆安全驾驶的一个重要研究方向,可以在车辆偏离航道时发出报警信息,有效地抑制事故的发生,具有重要的研究意义。
目前,国内外学者已经提出了很多车道线检测算法,主要分为两类:一类是基于图像特征的检测方法,即特征驱动法,是基于道路图像的一些特征(如车道线颜色、宽度以及边缘等特征[1-4])将图像的所有点标记为车道线点和非车道线点,这种机制要求道路的车道线颜色较为明显,边缘较为清晰,否则无法得到准确的检测结果;另一类方法是基于模型的检测方法,是根据提取的特征对预先定义好的车道线模型进行匹配,将车道线的提取转化为车道线模型中参数的计算问题。模型的假设主要有直线模型[5]和曲线模型[6-8]两种,其优点是对噪音不敏感,能较好地处理图像中物体局部被遮挡和覆盖的情况。本文结合道路的纹理特征并建立模型进行车道检测,既充分利用图像的信息,又在一定程度上保证了算法的鲁棒性。
本文首先对图像进行预处理,然后对图像进行Hough变换或者Gabor变换,得到车道线位置信息,判断出车辆是否在车道内行驶,如果不在则发出预警信号。
1 图像的预处理
图像的预处理主要是对摄像头实时采集的图像进行前期处理,主要包括去除图像的各种噪声,并根据摄像机的位置调节算法中的一些参数提取图像的感兴趣区域(ROI),以及进行边缘检测等,目的是为了加强图像的有用信息,抑制干扰。
标定摄像头以后,选取一定的区域作为车道线检测区域,进行平滑去噪,并对其边缘进行检测。本文采用Canny边缘检测[9]。图1为拍摄的原始道路图像,图2为不同环境下(白天、阴天、夜晚)的检测结果。
Hough变换作为一种经典的车道线检测算法,具有很强的适应性,然而该算法较为耗时,当车道线外在环境因素较为不清晰,或者受道路上一些其他因素的影响下,结果受干扰较大。Hough变换检测结果如图3所示。
2.2 基于ROI区域改进的Hough变换的车道线检测
针对图像中道路的车道线一般分布在道路左右两边的情况,本文对传统Hough变换的应用进行了改进,限定其投票空间的范围,也就是限定ρ和θ来调整其投票空间的范围。限定其左右车道线的极角和极径,调节好摄像头,通过不断的测试,得到目标点的极角约束区域和极径约束区域,也就得到感兴趣区域(ROI),如图4所示,只检测落在白色区域内的车道线。
通过建立极角、极径约束区域,可以有效地去除大量的干扰点,滤除旁边车道以及路边树木建筑物的干扰,并能够很大程度地提高算法的运行速度。当车道线的极角极径在检测区域内时,可以快速准确地检测车道线的位置;然而当图像在转弯、变道或者摄像头位置偏移时,车道线很容易超出检测区域,使得结果出现很大的偏差。
3 基于Gabor滤波器的车道线检测
针对道路车道线不清晰以及存在一些其他标志干扰的情况,本文提出了改进的车道线检测算法,即基于Gabor滤波器的车道线检测。通过Gabor找到图像的消失点,即图像中两条车道线的交点位置,再对消失点进行Hough变换,这样不仅提高了算法的适用性,还提高了算法的实时性。
3.1 Gabor变换原理
Gabor滤波器与人眼的生物作用相仿,因此经常用于纹理识别,并取得了较好的效果。Gabor滤波器是带通滤波器, 它的单位冲激响应函数(Gabor函数)是高斯函数与复指数函数的乘积。它是达到时频测不准关系下界的函数, 具有最好的兼顾信号在时频域的分辨能力。高斯函数的局部性特征使得Gabor滤波器只在局部起作用, 即具有良好的尺度特性和方向特性。因此,Gabor滤波器被广泛用于图像处理和图像分析领域。
本文通过对车辙印记以及车道线边缘等一些纹理特征进行分析,从而提取出道路的消失点以及车道线的信息。
Gabor滤波器的模板计算方程如式(2)所示,该模板分为实部(式(3))和虚部(式(4))两部分。
(2)车道线跟踪:根据上一帧测量的结果,限定角度在一定变化范围内(本文限制在10°范围,如图8(b)所示)进行Hough变换,这样大大减少了运算速度。当图像检测的消失点及车道线上的点少于所设定的阈值时,程序重新初始化。
4 车道识别
本文在应用的基础上对合肥以及沈阳的BRT车道进行统计,其BRT车道相对其他车道具有如下特点:其左右车道线都为黄色,一般位于路的两边,道路的两边有栏杆或者路牙等特征。基于此特点,本文实现了BRT车道的识别系统,结合GPS判断其所在位置范围内有无BRT车道,若有则判断车道线颜色是否为黄色,即建立颜色模型,对车道线上的每一点颜色进行标记,并综合判断其左右车道线是否是黄色车道线,对黄色进行标记,如图9左图所示。由于车道线长期受到磨损有一定的失真,且在晚上黄光灯照射下不易准确地识别颜色,本文结合其栏杆、路牙等特征识别车道,对检测的车道线两边的一定区域(图9右图白色矩形区域)进行对比,比较其颜色边缘纹理等特征差别。通过大量的测试,本文得到了判断其是否为BRT车道的先验阈值,当矩形区域差别大于设定阈值时,则判断为公交专用车道,从而准确实现车道检测。
本文首先通过GPS采集车辆所在区域的经纬度信息, 并建立道路经纬度信息库判断车辆所在位置附近是否具备BRT专用车道,若有,则进行车道线检测,找到车辆所在车道的左右车道线,并判断车道线上颜色信息以及车道线左右的边缘亮度等信息,分析其是否具备BRT快速公交车道的特征,如具备,则可以作为监控前方车辆是否违规驶入BRT车道的一个依据。
本文对合肥公交专用车道进行了大量的实验,实验结果表明,该算法具有很强的适用性,能够准确地检测到车辆所在车道的车道线,并对其车道作出正确的判断。车道识别结果如图11所示。
|