找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

[嵌入式/ARM] 基于Verilog HDL设计实现的乘法器性能研究

[复制链接]
admin 发表于 2013-3-26 08:30:34 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
摘要:

   关键词:Verilog HDL;改进Booth算法;乘法器;
   1 引言
        Verilog HDL是当今最为流行的一种硬件描述语言,完整的Verilog HDL足以对最复杂的芯片和完整的电子系统进行描述[1]。本文采用Verilog HDL语言来设计实现4-2和5-2混合压缩器构成的乘法器的设计,并与另外实现的两种乘法器从速度,面积和硬件资源占用率等方面进行了性能比较,得出用这种改进压缩器要比两位阵列乘法器和传统的4-2压缩器构成的乘法器速度提高了10%,硬件资源占用减少了2%。
   2 两位阵列乘法器
   阵 列乘法器基于移位与求和算法。两位阵列乘法器是对乘数以2bit进行判断,这样可以在部分积的数目上比一位判断阵列乘法器减少1倍;另外,阵列乘法器结构 比较规范,利于布局布线,但是阵列乘法器存在进位问题,运算速度比较慢,所需时钟周期长,时延大。以下是两位判断的乘法器的Verilog HDL语言部分程序:
   module imult _radix_2(prod,ready,multiplicand,multiplier,start,clk);
         ……
           case ( {product[1:0]} )
             2'd0: pp = {2'b0, product[31:16] };
             2'd1: pp = {2'b0, product[31:16] } + multiplicandX_1;
             2'd2: pp = {2'b0, product[31:16] } + multiplicandX_2;
             2'd3: pp = {2'b0, product[31:16] } + multiplicandX_3;
           ……   
   3  改进Booth编码乘法器
          阵列乘法器虽然占用相对较少的硬件面积,可是运算速度非常慢,不能满足高速运算的要求。为了得到高速的乘法器,可以从两个方面来提高乘法器的计算速度:减 少部分积数目;提高部分积压缩速度。通常减少部分积数目采用二阶的Booth编码实现;可用4-2压缩器构成的Wallace树来提高部分积求和速度。本 文采用4-2压缩器和5-2压缩器的混合Wallace树来进一步提高求和速度。www.51kaifa.com
          改进Booth算法通过对二进制补码数据重新编码,压缩PP(部分积)数目,以提高运算速度。其中,压缩率取决于编码方法,如果采用三位编码,可压缩 1/2的PP,再对所得的n/2个部分积进行求和运算。在电路实现中还可采用混合握手协议和管道传输方式,可以降低电路的功耗,仅占Amulet3i乘法 器的每次运算的能量消耗的50%【2】,另外,也可以采用混合逻辑乘法器设计【3】。Booth算法电路图在文献[4]中有具体介绍。
   3.1  4-2压缩器
           4-2压缩器使用2个CSA(Carry-save Adders保留进位加法器),将5个数据(4个实际数据和一个进位)相加产生3个数(Sun, Carry和Cout)。4-2压缩器结构图如图1所示【4】。
   
    201211070455398502233.jpg
   图1 由2个CSA构成的4-2压缩器
           4-2压缩器是进行部分积压缩最常用到的部件,与全加器相比,具有电路简单、连线规则的优点.传统4-2压缩器输入与输出的逻辑关系表达式[8]为:www.51kaifa.com
   
          表达式中:In1~In4为部分积输入信号;Cin为邻近压缩器进位输入;Sum为伪和;Carry和Cout为进位输出,其权值相同。由图及表达式知, 输出进位与输入进位式相互独立的,即输出并不由输入产生,这样就能保证部分积同时且独立地相加。4-2压缩器对部分积进行压缩的图如图2【5】所示:
            201211070455398658434.jpg
                     图2  4-2压缩器组结构图
          由4-2压缩器进行部分积压缩的Booth乘法器的Verilog HDL描述部分程序如下:
   module Booth_radix_4(prod,ready,multiplicand,multiplier,start,clk);
        ……  
         dug dug0(PP0,mult[2:0]);
               ……
   count count1(clock,sum0,carry0,PP0,PP1,PP2,PP3,cout0,cin0);
        count count2(clock,sum1,carry1,PP4,PP5,PP6,PP7,cout1,cout0);
         ……
        count count3(clock,sum,carry,sum0,carry0,sum1,carry1,cout,cin0);www.51kaifa.com
          ……
   3.2    4-25-2混合压缩器
        4-2压缩器在很大程度上减少了部分积的求和速度,但是它有一个缺点是Sum(伪和信号)比Carry(进位信号)的产生速度慢,因此,进位信号必须等待伪和信号的产生,这样又造成了压缩速度的降低和功耗的增加.可以用异或门和2-1数据选择器对电路进行变换【6】,这种结构能同时产生伪和信号和进位信号,并且关键路径的延迟也只有全加器的1.5倍【8】。为进一步压缩部分积的求和级数,加快压缩速度,本文同时采用了4-2压缩器和5-2压缩器混合逻辑设计。5-2压缩器的结构图如图3【7】所示,
   
    201211070455398970935.jpg
   图3  5-2压缩器的结构图
           5-2 压缩器有7个输入In1~In5(权值相同),3个进位输出(权值相同)和一个伪和(权值比进位输出低一位),这种结构的压缩器结构规整,且仅有6个异或 门的延迟。文献[8]中给出了5-2压缩器的输入与输出的逻辑关系表达式。整个压缩器结构图如图4所示:
    201211070455399283436.jpg
   
                 图4  本文采用的整个压缩器结构
          由4-2和5-2混合压缩器实现的改进Booth乘法器的Verilog HDL描述部分程序如下:
   module Booth_radix_5(prod,ready,multiplicand,multiplier,start,clk);
        ……  
         dug dug0(PP0,mult[2:0]);
         dug dug1(PP1,mult[4:2]);
         ……
   count count1(clock,sum0,carry0,PP0,PP1,PP2,PP3,cout0,cin0);
              ……
         sum sum1(clock,sum,carry,In16,sum0,carry0,sum1,carry1,cout,cin0,cin1);
          ……
   4逻辑仿真及性能比较
         本文在Xilinx ISE和Quartus II两种集成开发环境下, 对以上3种结构的乘法器进行了编译、综合、适配、时序仿真以及功率分析,其中输入信号的字宽为32bit。有仿真工具Xilinx ISE和Quartus II进行的仿真结果报告文件,很容易做出对这3种乘法器的性能比较,如表1所示。
   表1  3种乘法器性能比较表
     
       Resources Summary   
     
       乘法器类型   
     
       资源占用率   
     
       面积(mm2)   
     
       时延(ns)   
     
       两位阵列乘法器   
     
       37/128(29%)   
     
       6.91   
     
       8.285   
     
       4-2压缩的Booth乘法器   
     
       38/256(15%)   
     
       12.07   
     
       3.99   
     
       4-2和5-2混合压缩的     
       Booth乘法器   
     
       35/256(14%)   
     
       11.849   
     
       3.59   


         有性能比较表知:阵列乘法器面积最小,功耗小,但是运行速度慢;单纯使用4-2压缩器的Booth乘法器在资源占用率和速度上要比阵列乘法器提高约1倍, 功耗略大于阵列乘法器;而本文设计采用的乘法器方案有效提高了乘法器的运算能力,应用在FPGA上工作频率可达256.61MHz,要比传统的4-2压缩 器构成的乘法器在速度上提高了10%,硬件资源占用减少了约1%。
   4结论
          不同架构的乘法器在性能上都存在优点和缺点,在选择乘法器时,应根据应用场合的要求在速度、面积和功耗等方面综合考虑,本文采用Xilinx ISE和Quartus II两种集成开发环境对所实现的乘法器综合进行测试,更能准确显示不同结构的乘法器的性能优势,帮助用户快速选择合适的乘法器。本文设计采用的乘法器方案要比传统的4-2压缩器构成的乘法器在速度上提高了10%,硬件资源占用减少了约1%,有效提高了乘法器的运算能力。
            本文作者创新点: 本文采用4-2和5-2混合压缩器对部分积进行压缩,减少了乘法器的延时和资源占用率;并用Verilog HDL语言实现了两位阵列乘法器和传统的Booth编码乘法器。同时在Xilinx ISE和Quartus II两种集成开发环境下进行综合仿真测试,这更有利于比较乘法器的性能优势,便于用户更准确地选择适合应用场合的乘法器。
   
   参考文献
   [1]王冠,黄熙,王鹰.Verilog HDL与数字电路设计[M].北京:机械工业出版社,2006
   [2]Yijun Liu.An Asynchronous Pipelined 32×32-bit Iterative Multiplier Using Hybrid Handshaking Protocol.http://async.org.uk/ukasyncforum14/forum14-papers/forum14-liu. pdf
   [3]何静,李清峰.基于CPLD的混合逻辑乘法器的设计[J].微计算机信息,2006,22(17):244-246.www.51kaifa.com
   [4]Dony C,Purchase J.Winder R.Exception Handling in Object-oriented System[C].Report on ECOOP91 Workshop W4,1991:17-30.
   [5] 王新刚,樊晓桠,李瑛,等.一种并行乘法器的设计与实现[J].计算机应用研究,2004,(7):135-137.
   [6] Radhakrishnan D,Preethy A P. Low power CMOS pass logic 4-2 compressor for high-speed multiplications[c]∥Proceedings of the 43rd IEEE Midwest Symposium of Circuits and Systems. Piscataway,USA:IEEE,2000:1296
   -1298.
   [7] Pallavi Devi Gopineedi, Himanshu Thapliyal, M.B Srinivas, Hamid R. Arabnia. Novel and Efficient 4: 2 and 5: 2 Compressors with Minimum Number of Transistors Designed for Low-Power Operations,ESA,2006: 160-168.
   [8]梁峰,邵志标,梁晋.Radix-16 Booth流水线乘法器的设计[J].西安交通大学学报,2006,40(10):1111-1114.
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2024-12-28 21:53 , Processed in 0.060508 second(s), 9 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表