找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

[嵌入式/ARM] 微弱信号检测方法研究

[复制链接]
admin 发表于 2013-3-24 05:06:00 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
摘  要: 噪声是限制微弱信号检测系统的首要因素。对于微弱信号检测来说,如能有效克服噪声,就可提高信号检测的灵敏度。研究利用自适应滤波和小波分析来对微弱信号进行降噪,通过Matlab仿真证明,自适应滤波和小波分析对噪声有着很强的抑制作用。
关键词: 自适应滤波;小波分析;噪声
    微弱信号检测的目的是利用电子学、信息论以及物理学的方法,分析噪声产生的原因,规律及被测信号的特点,检测被背景噪声淹没的弱信号[1]。但是由于微弱信号的信噪比低、信号幅度较小、噪声特性不稳定等原因,不适合用常规的滤波方法对信号进行降噪。如何对微弱信号进行有效的降噪,使微弱信号信噪比得到提升,就显得尤为重要。自适应滤波和小波分析在信号处理方面有着巨大的优势,并均能增强微弱信号的信号特征,有利于提高对有用信号的识别率。
1 自适应滤波
1.1 自适应滤波概述

 自适应滤波理论和技术是统计信号处理和非平稳随机信号处理的主要内容,它可以在无需先验知识的条件下,通过自学习适应或跟踪外部环境的非平稳随机变化,并最终逼近维纳滤波和卡尔曼滤波的最佳滤波性能。因而,自适应滤波不但可以用来检测确定性信号,而且可以检测平稳的或非平稳的随机信号。
1.2 自适应滤波MATLAB降噪仿真
 应用自适应滤波对被噪声所污染的微弱信号进行降噪处理,在Matlab软件中进行仿真实验。自适应滤波Matlab降噪仿真如图1所示,序列号n强调的是数的前后顺序,而淡化顺序表示为物理意义。图中可以看到被均值为零、信噪比为3 dB的高斯白噪声污染的微弱信号经过一段自适应时间之后,噪声逐渐降低,波形逐渐向原信号恢复,最后达到和原信号几乎一致,去噪效果明显。图2所示为在最初的时候自适应滤波均方误差较大,然后逐渐减小,说明自适应滤波正在起到降低噪声的作用,最后均方误差变得十分微小,高斯白噪声被大范围滤除,滤波后的信号已经和原信号几乎一致。图3是从频谱的角度分析高斯白噪声被自适应滤波所抑制。这里,自适应滤波采用LMS算法,滤波器阶数为128阶。
    2012110705101753088274.gif
    通过Matlab仿真验证结果可知,自适应滤波可以有效抵消随机噪声和其他频率的干扰信号,从而提升微弱信号信噪比。
2 小波分析
2.1 小波分析概述及去噪原理

 小波分析属于时频分析的一种,它具有多分辨率分析的特点,而且在时、频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变、但其形状可改变,及时间窗和频率窗都可以改变的时域局部化分析方法。小波分析可以有效消除噪声,提取有用的信号,目前在众多研究领域已得到重视与应用。利用小波分析的优点,对获取的弱信号进行分析,结果表明微弱的信号可以在小波分析下得到显现,增强了目标特征,有利于提高对有用信号的识别率[2]。
 小波分析去噪是将原始信号和噪声信号进行叠加,然后通过多尺度小波变换到小波变换域中,得到小波分解后的低频系数和高频系数,对得到的高频小波系数进行处理,在各尺度下尽可能提取出信号的小波系数而去除属于噪声的小波系数。因为小波分析可以使信号的能量在小波变换域中集中于少数系数上。小波系数较大者,携带信号能量也较多;小波系数较小者,携带信号能量也较少。基于这一点对小波系数进行相应的处理,从而去除或减弱属于噪声的小波系数,增强属于有用信号的小波系数。最后,采用逆小波变换处理低频系数和处理后的高频系数重构原始信号,达到去噪的目的[3]。
2.2 小波分析MATLAB降噪仿真
 图4为小波分析与傅里叶分析降噪的对比,从图中可看出在同等条件下小波分析的降噪效果要优于傅里叶分析的降噪效果。
    2012110705101760900275.gif
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2024-12-25 13:52 , Processed in 0.056222 second(s), 10 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表