找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

[嵌入式/ARM] 门电路延迟时间的Multisim仿真测试方案

[复制链接]
admin 发表于 2013-3-21 21:00:45 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
摘  要:介绍了用Multisim 仿真软件测试门电路延迟时间的方法,提出了三种测试方案,即将奇数个门首尾相接构成环形振荡电路,用虚拟示波器测试所产生振荡信号的周期,计算门的传输延迟时间;奇数个门首尾相接构成环形振荡电路,用虚拟示波器测试其中一个门的输入信号、输出信号波形及延迟时间;在一个门的输入端加入矩形脉冲信号,测试一个门的输入信号、输出信号波形及延迟时间。所述方法的创新点是,解决了受示波器上限频率限制实际硬件测试效果不明显的问题,并给出Multisim 软件将门的初始输出状态设置为0 时,使测试电路不能正常工作的解决方法。
     0   引  言
     门电路的传输延迟时间tpd 是表示工作速度的指标,实验室硬件测量的一般方法是,将N 个门( N为奇数) 首尾相接构成振荡周期为T = 2N tpd的环形振荡电路,用示波器通过显示的波形测量出振荡周期T后,再计算出传输延迟时间tpd。
     由于门的传输延迟时间tpd 很短,测量时受示波器上限频率限制,测量效果较差,而用Mult isim 软件仿真测试,可获得理想的实验效果。
     以下分析用Mult isim 2001版本,所得结论也适于其他版本。
     1   Multisim仿真测试方案
     1. 1   测试方案1
     将奇数个门首尾相接构成环形振荡电路,用虚拟示波器测试所产生振荡信号的周期,计算门的传输延迟时间。
     设所用门的个数为N ,振荡信号的周期为T ,则传输延迟时间为:
    20121107052932907551153.jpg

  以反相器74LS04N 作为仿真实验器件,构建仿真实验电路如图1 所示。
    20121107052932938801154.jpg
  
   
图1  测试方案1 的仿真实验电路
     由于Mult isim 软件将每个门的初始输出状态设置为0,直接用奇数个门首尾相接构成环形振荡电路进行仿真时,出现 " nable to determine the simulatiONtimeSTep automatically" 的提示,无法同步仿真模拟。
     解决的方法是在左边第一个门U1A 的输入端接入转换开关J1 ,仿真时先将开关J1 置于接地状态,电路对输入的0 信号进行处理后便脱离设置的初始输出状态,再将转换开关J1 置于接输出端构成环形振荡电路。
     仿真前,可对74LS04N 的上升延迟时间及下降延迟时间进行设置,如设置r ise delay= 10 ns,fall delay=10 ns。
   
   
     仿真时示波器显示的波形及振荡周期测试如图2所示。
     测试的振荡周期T = 102. 2 ns,则传输延迟时间tpd= T/ ( 2N ) = 102. 2/ 10= 10. 22 ns,结果与设定值基本一致。
    20121107052932985671155.jpg

图2  图1 电路输出波形及振荡周期测试
     1. 2   测试方案2
     将奇数个门首尾相接构成环形振荡电路,用虚拟示波器测试其中一个门的输入信号、输出信号波形及延迟时间。
     以反相器74LS04N 作为仿真实验器件,构建仿真实验电路如图3 所示。
    20121107052933032541156.jpg

图3   测试方案2 的仿真实验电路
     仿真前,可对74LS04N 的上升延迟时间及下降延迟时间进行设置,如设置r ise delay= 10 ns,fall delay=10 ns。
     仿真时示波器显示的输入信号、输出信号波形及延迟时间测试如图4 所示。
    20121107052933126291157.jpg

图4  图3 电路输入、输出波形及延迟时间测试
     测试的传输延迟时间tpd = 11. 1 ns,测量结果与设定值基本一致。
   
     1. 3   测试方案3
     在一个门的输入端加入矩形脉冲信号,测试一个门的输入信号、输出信号波形及延迟时间。外加信号的周期T = 2N tpd ,以保证门的工作频率和前述其他测试方法相同。
     以反相器74LS04N 作为仿真实验器件,构建仿真实验电路如图5 所示,信号发生器输出矩形脉冲的频率选为10 MHz。
    20121107052933188791158.jpg

图5  测试方案3 的仿真实验电路
     仿真前,可对74LS04N 的上升延迟时间及下降延迟时间进行设置,如设置rise delay= 10 ns,fall delay=10 ns。
     仿真时示波器显示的输入信号、输出信号波形及延迟时间测试如图6 所示。
    20121107052933235661159.jpg

图6  图5 电路输入、输出波形及延迟时间测试
     测试的传输延迟时间tpd = 11. 0 ns,测量结果与设定值基本一致。
     2   误差分析
     上述三种测试方案的测试结果表明存在误差,原因是组成测试电路时门的输入端、输出端接入测试仪器,使门的输入端、输出端存在负载效应,从而使延迟时间略大于设定值。
     在测试方案1 中,示波器接至一个门的输出端,仅对门的输出端产生影响;测试方案2、3 中,示波器接至一个门的输入端、输出端,对门的输入端、输出端均产生影响。所以测试方案1 测试的延迟时间小于测试方案2、3;测试方案2、3 测试的延迟时间基本相同。
     3   结  语
     Multisim 软件仿真具有丰富的仿真分析能力,但也存在一些问题及不足,使用时必须认真分析思考软件的设置条件,改进仿真实验方法,才能达到预期的实验效果。
     所述方法具有实际应用意义,这些方法亦可用于其他功能逻辑门传输时间的仿真测试。
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2025-1-9 09:25 , Processed in 0.057128 second(s), 10 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表