找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

[电源电路] MIC4680中文资料及应用电路

[复制链接]
admin 发表于 2012-12-27 23:05:52 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
MIC4680中文资料及应用电路
  MIC4680是Micrel公司推出的一种新型开关型电压调节器。它在4~34V的输入电压范围内能输出稳定的固定或可调输出电压。可广泛应用于调节卡、正负电压转换器、电池充电以及能驱动外部FET的高电流输出调节系统中。文中介绍了它的主要特点、引脚功能、主要参数和可调输出时的典型电路及设计方法。最后给出了由MIC4680构成的手机电池充电电路和特正+V转换成-12V输出的正、负电压转换器等实际电路。
  关键词:电源调节 电压转换 电池充电 MIC4680
  1 概述
  MCI4680是Micrel公司最新推出的一种新型开关型电压调节器。它可以方便地应用于具有固定电压输出或可调电压输出模式的电源系统中。在200kHz时,MIC4680能够在很宽的输入范围内保持1.3A的连续电流输出。在用于固定电压输出系统时,MIC4680所适用的固定电压输出3.3V或5.0V,而用于可调电压输出模式时,MIC4680所适用的最小电压为1.25V。 ET374212010072417212312011060818322818581.gif
  MIC4680具有宽达4~34V的输出电压范围。并具有极好的线性和负载瞬变响应。它采用轨对轨限流模式,并具有热关断故障保护功能。在关断模式,MIC4680的静态保持电流小于2μA。
  MIC4680所需的外部元件极少,仅用两支电容、一个电感和一个稳压二极管便可构成具有固定输出的电压调节系统。并可方便地对中心频率进行快速的瞬变理补偿。
  MIC4680具有三种规格:其中MIC4680MB用于可调电压输出,而MIC4680-3.3MB和MIC4680-5.0MB分别用于3.3V和5.0V的固定电压输出系统。它们均采用8脚SOP小型封装。其接点温度范围为-~125℃。
  MIC4680的主要特点如下:
  ●具有1.3A的连续电流输出;
  ●能适用任何接口方案;
  ●用于固定输出时,仅需4只外部元件;
  ●具有200kHz的固定操作频率;
  ●适用于3.3V、5.0V和可调电压的输出模式;
  ●可进行快速瞬变的中心补偿; ET374212010072417212322011060818322818582.gif
  ●具有宽达4~34V的输入电压范围;
  ●典型的关断模式电流小于2μA;
  ●开关效率大于90%;
  ●具有热关断和过流保护功能;
  MIC4680是一个简单高效降压型开关电压调节器,可完全替代以往的TO-220和TO-263型封装的电压调节器,能有效地将5V或12V电压调节成稳定的2.5V或3.3V标准输出电压。因而可广泛应用于电源调节卡、正负转换器、电流充电以及能驱动外部FET的高电流输出调节系统。
  2 引脚功能及极限参数
  2.1 引脚功能
  MIC4680系列中的三种规格均采用SOP-8封装形式。图1所示为MIC4680的引脚排列。各引脚的功能说明如下:
  SHDN(1脚):关断使能脚。该脚为逻辑低电平时,MIC4680被使能;为逻辑高电平时(大于1.6V),MIC4680被关断。
  IN(2脚):电源电压输入引脚,外接未校准的4~34V电源电压。
  SW(3脚):开关输出端,为器件内部NPN开关管的发射极输出,通常在SW引脚外接一个稳压二极管。
  FB(4脚):反馈输入端。对于输出电压可调的MIC4680,FB脚应外接分压电阻网络;而而于固定输出的MIC4680,由于分压电阻被固定设计在器件内部,因此, ET374212010072417212332011060818322818583.gif 在外部将此端连接到输出点即可。图2所示为MIC4680的内部结构框图,图中虚线所连是输出电压可调的MIC4680的内部结构,它与固定输出电压型MIC4680的区别在于:它把FB端和内部误差放大器的反相输入端直接相连而没有内部分压电阻。正是由于分压电阻的外置,才为输出电压的调整提供了可能。
  GND(5~8脚):接地引脚。
  2.2 极限参数
  MIC4680具有很宽的输入电压范围,在4~34V的输入电压范围内均可输出稳定的电压。下面是MIC4680的极限参数。
  ●最高输入电压(VIN):38V;
  ●器件关断电压(VSHDN):-0.3V~+38V;
  ●稳态输出开关电压(VSW):-1V;
  ●反馈电压(VFB):12V;
  ●存贮温度范围:-65℃~+150℃;
  ●热阻:63℃/W。
  2.3 电气参数
  可调型MIC4680的反馈电压为1.23V,而MLC4680-3.3和MIC4680-5.0的输出电压分别为3.3Vt 5.0V。以下是MIC4680系列电压调节器的主要电气参数: ET374212010072417212342011060818322818584.gif
  ●最大工作周期:97%
  可调型MIC4680的测试条件为VFB=1.0V
  MIC4680-3.3的测试条件为VFB=2.5V
  MIC4680-5.0的测试条件为VFB=4.0V
  ●输出漏电流:
  在VIN=34V,VSHDN=5V,VSW=0V时为50~500μA
  在VIN=34V,VSHDN=5V,VSW=-1V时为4~20mA
  ●静态电流为7~12mA,需要说明的是:该数值对可调型、3.3V和5.0V输出的MIC4680来说,其测试条件中VFB的值分别为1.5V、4.0和6.0。
  3 应用设计
  图3是输出可调的MCI4680电压调节器的典型应用电路。对于输出电压可调的应用,MIC4680的FB端需要至少1.23V的反馈参考信号。几种常用的输出电压时的分压电阻的推荐值如表1所列。同时表1还列出了电路中其它几种外围元器件的参考值。
  
  表1 典型输出电压时的分压电路推荐值
  VOUTR1R2CIND1L1COUT1.8V3.01kΩ6.49kΩ15μF/35V
  2A/60V肖特基二极管(B260或SS60)
  6.8μH/1.5A200F/10μV2.5V3.01kΩ2.94kΩ3.3V3.01kΩ1.78kΩ5.0V3.01kΩ976Ω6.0V3.01kΩ787Ω
  对于其它输出电压,电阻R1和R2的值可以依据下列公式来确定:
  R1=R2[(VOUT/VREF)-1]
  4 实际应用电路
  4.1 手机电池充电电路
  图4所示是由MIC4680组成的手机电池充电电路。图中,FB端的反馈参考电压信号由R2和R3组成的电阻分压网络来提供。当不需要为手机电池充电时,SHDN通过开关S1接至电压输入端IN而使SHDN位于高电平,从而使MIC4680处于关断状态,手机在自带电池的驱动下正常工作。 ET374212010072417212352011060818322818585.gif
  如果需要为手机电池充电,则可将SHDN端通过S1接至GND端以使其处于低电平,从而将电路开通,在经过进一步的滤波处理后,将在电路的输出端得到5V的输出电压输出。图中使用的放大器为Micrel公司的MIC6211BM5,利用它可以是提高电路的稳定性和工作效率。该电路的输出电流为800mA。如果用MIC6211BM5和一个MOSFET场效应管来进行组合放大,则可将电路的输出电流提高到5A左右。另外,通过调整R2和R3的值还可调整电路的输出电压。
  4.2 正负电压转换电路
  利用MIC4680还可以进行正负电压的转换。图5所示是用MIC4680组成的正负电压转换电路,利用该电路可以将+12V的输入电压转换成-12V的输出电压,并可得到150mA的输出电流。
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2024-11-23 11:33 , Processed in 0.081273 second(s), 13 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表