找回密码
 注册会员
更新自动建库工具PCB Footprint Expert 2024.04 Pro / Library Expert 破解版

电源变压器磁芯性能要求及材料分类

[复制链接]
admin 发表于 2012-9-4 18:21:08 | 显示全部楼层 |阅读模式

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有账号?注册会员

×
为了满足开关电源提高效率和减小尺寸、重量的要求,需要一种高磁通密度和高频低损耗的变压器磁芯。虽然有高性能的非晶态软磁合金竞争,但从性能价格比考虑,软磁铁氧体材料仍是最佳的选择;特别在100kHz到1MHz的高频领域,新的低损耗的高频功率铁氧体材料更有其独特的优势。为了最大限度地利用磁芯,对于较大功率运行条件下的软磁铁氧体材料,在高温工作范围(如80~100℃),应具有以下最主要的磁特性:

1)高的饱和磁通密度或高的振幅磁导率。这样变压器磁芯在规定频率下允许有一个大的磁通偏移,其结果可减少匝数;这也有利于铁氧体的高频应用,因为截止频率正比于饱和磁通密度。

2)在工作频率范围有低的磁芯总损耗。在给定温升条件下,低的磁芯损耗将允许有高的通过功率。
附带的要求则还有高的居里点,高的电阻率,良好的机械强度等。
新发布的“软磁铁氧体材料分类”行业标准(等同IEC61332:1995),将高磁通密度应用的功率铁氧体材料分为五类,见表1。每类铁氧体材料除了对振幅磁导率和功率损耗提出要求外,还提出了“性能因子”参数(此参数将在下面进一步叙述)。从PW1~PW5类别,其适用工作频率是逐步提高的,如PW1材料,适用频率为15~100kHz,主要应用于回扫变压器磁芯;PW2材料,适用频率为25~200kHz,主要应用于开关电源变压器磁芯;PW3材料,适用频率为100~300kHz;PW4材料适用频率为300kHz~1MHz;PW5材料适用频率为1~3MHz。现在国内已能生产相当于PW1~PW3材料,PW4材料只能小量试生产,PW5材料尚有待开发。




3 变压器可传输功率

众所周知,变压器的可传输功率Pth正比于工作频率f,最大可允许磁通密度Bmax(或可允许磁通偏移ΔB)和磁路截面积Ae,并表示为


C为与开关电源电路工作型式有关的系数(如推挽式C=1;正向变换器C=0.71;反向变换器C=0.61);Wd为绕组设计参数(包含电流密度S,占空因子fCu,绕组截面积AN等)。

这里,我们重点讨论(fBmaxAe)参数(暂不讨论绕组设计参数Wd)。增大磁芯尺寸(增大Ae)可提高变压器通过功率,但当前开关电源的目标是在给定通过功率下要减小尺寸和重量。假定固定温升,对一个给定尺寸的磁芯,通过功率近似正比于频率。图1示出变压器可传输功率Pth与频率f的关系。提高开关频率除了要应用快速晶体管以外,还受其它电路影响所限制,如电压和电流的快速改变,在开关电路中产生扩大的谐波谱线,造成无线电频率干扰,电源的辐射。对变压器磁芯来说,提高工作频率则要求改进高频磁芯损耗。图1中N67材料(西门子公司)比N27材料有更低的磁芯损耗,允许更大的磁通密度偏移ΔB,因而变压器可传输更大的功率。图2示出磁芯损耗与频率的关系。磁芯总损耗PL与工作频率f及工作磁通密度B的关系由下式表示:

n是Steinmetz指数,对功率铁氧体来说,典型值是2.5;指数m=1~1.3(当磁损耗单纯地由磁滞损耗引起时,m=1;当f=10~100kHz时,m=1.3;当f>100kHz时,m将随频率增高而增大,见图2,这个额外损耗是由于涡流损耗或剩余损耗引起的)。很明显,对于高频运行的铁氧体材料,要努力减小m值。

*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

QQ|手机版|MCU资讯论坛 ( 京ICP备18035221号-2 )|网站地图

GMT+8, 2024-12-23 13:40 , Processed in 0.064074 second(s), 10 queries , Redis On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表